
WebAssembly and Rust

Michael Allwright
michael.allwright@rustify.be



How many people here have used Docker?



“If WASM+WASI existed in 
2008, we wouldn't have 
needed to create Docker. 
That's how important it is”

Solomon Hykes - 2019
Co-founder of Docker



Chapter 1
The origins of WebAssembly



Precursors to WebAssembly

Delivering rich applications over the web has 
been a pursuit since the 90s

- Required user to install a plugin

- Vendor lock-in/no portability

- Plagued with security issues



Javascript

Only Javascript has stood the test of time

- Based on the ECMAScript standard

- Support from all major browsers

- Reasonable performance

- Awkward language with unusual semantics



WebAssembly (WASM)

A new instruction set for stack-based VMs

- Standardized by the W3C

- Supported in all major browsers

- Near native performance

- Secure & Portable

- Can be written in any language*



WebAssembly on the front-end

Web Applications Libraries



WebAssembly on the back-end

WebAssembly enables serverless and Function as a 
Service (FaaS) on the backend



WebAssembly on the edge

WebAssembly can also be used on IoT devices

- Separate HAL from business logic

- Business logic is portable

- Light-weight containerization



Chapter 2
The WebAssembly System Interface



WebAssembly System Interface (WASI)

WebAssembly is a completely sandboxed 
technology

- All functionality must be imported or 
exported

- WASI defines standard interfaces for those 
functions



WebAssembly System Interface (WASI)

WASI is currently in its second preview

- Provides: IO, clocks, RNG, file systems, 
sockets, HTTP

- The third preview will introduce async 
support



Chapter 3
Using WebAssembly today



Compiling to WebAssembly

LLVM is one of two toolchains capable of 
generating WebAssembly*

- Used by both clang and rustc compilers

- Can only import/export functions with 
integers, floats, and booleans

- No support for strings, structs, threads

* The other toolchain is Binaryen and is used by the AssemblyScript language



Using WebAssembly from C/C++

The primary way to use WebAssembly from C/C++ is 
via Emscripten



Using WebAssembly from Rust

The primary way to use WebAssembly from Rust is via 
wasm-bindgen, which is both a crate and a tool for 
generating bindings

wasm-bindgencargo/rustc



wasm-bindgen (crate)

The wasm-bindgen crate:

- Provides macros for creating bindings

- Is the foundation of the web-sys and js-sys 
crates

- Enables moving structs, strings etc. across 
the Rust/Javascript boundary



wasm-bindgen (tool)

After compiling to WebAssembly, the 
wasm-bindgen tool will:

- Strip the bindings information out of the 
compiled module

- Generate a Javascript loader



Chapter 4
When to use WebAssembly?



When to use WebAssembly?

On the front-end when:

- Full-stack web applications in Rust

- In browser transcoding, encryption, image 
processing, inference

- Porting existing applications to the web



When to use WebAssembly?

On the back-end when:

- Full-stack web applications in Rust

- Running C/C++/Rust on FaaS 
infrastructure

- Computational loads



When to use WebAssembly?

On IoT devices to:

- Write portable business logic in a high 
level language

- Separate the HAL and business logic

- Light-weight containerization



Conclusion



Conclusions

- WebAssembly is actively used today

- Supported by all major browsers, on the backend, 
and on IoT devices

- Unlocks high performance, security, and portability



Questions?

For training, consulting, or development in 
WebAssembly and/or Rust, feel free to 

contact me at: michael.allwright@rustify.be

mailto:michael.allwright@rustify.be

