
How Rust boosts confidence 
and productivity
my experiences as an algorithm 
researcher 

Jeroen Gardeyn
PhD student - CODeS



Background

Rustiec Usergroup Meeting2



Rustiec Usergroup Meeting3

Combinatorial Optimization



• Combinatorial explosion
• Algorithms to search good solutions

• Lots of moving parts, complex 
datastructures

• High-level, high-performance 
programming

Rustiec Usergroup Meeting4

Combinatorial Optimization

https://en.wikipedia.org/wiki/combinatorial_explosion



Rust for algorithmic
programming

Rustiec Usergroup Meeting5



Rustiec Usergroup Meeting6

Types of bugs

Compile-time 
Errors

Runtime 
Crashes

Incorrect 
Execution

Silent Incorrect 
Execution

difficulty of detection



Rustiec Usergroup Meeting7

Types of bugs

Compile-time 
Errors

Runtime 
Crashes

Incorrect 
Execution

Silent Incorrect 
Execution

Compile-time 
Errors

difficulty of detection



• Correctness/robustness à ⇧ confidence & ⇧ productivity
• Speed & memory safety are just the 🍒 on top

• Prime choice for writing complex algorithms, even if:
• GC had no overhead
• C/C++ did not suffer from memory safety issues

Rustiec Usergroup Meeting8

Rust for high-level programming



Rustiec Usergroup Meeting9

Vehicle Routing Problem



Rustiec Usergroup Meeting10

Vehicle Routing Problem



Rustiec Usergroup Meeting11

Case 1: The compiler is your friend



• Move potential errors as much as possible to compile time:
• Make invalid states unrepresentable
• Sum types (enums)
• Pattern matching (exhaustive)
• Destructuring
• Rust has no null and no exceptions (Option<T> & Result<T>)

Rustiec Usergroup Meeting12

Case 1: The compiler is your friend



Rustiec Usergroup Meeting13

Case 2: Functional programming



Rustiec Usergroup Meeting14

Case 2: Functional programming

.iter() .iter() .iter()



Rustiec Usergroup Meeting15

Case 2: Functional programming

.iter()

.chain()

.iter() .iter()



Rustiec Usergroup Meeting16

Case 2: Functional programming



Rustiec Usergroup Meeting17

Case 2: Functional programming



Rustiec Usergroup Meeting18

Case 2: Functional programming



Rustiec Usergroup Meeting19

Case 2: Functional programming



Rustiec Usergroup Meeting20

Case 2: Functional programming



Rustiec Usergroup Meeting21

Case 2: Functional programming



Rustiec Usergroup Meeting22

Case 2: Functional programming

(from, to)

.tuple_windows()



Rustiec Usergroup Meeting23

Case 2: Functional programming



Rustiec Usergroup Meeting24

Case 2: Functional programming



Rustiec Usergroup Meeting25

Case 2: Functional programming



Rustiec Usergroup Meeting26

Case 2: Functional programming



• Functional programming for many cases is:
• More expressive
• Documents itself
• Easier to write without bugs

• No worries about performance
• Zero cost abstractions
• Lazy evaluation

Rustiec Usergroup Meeting27

Case 2: Functional programming



Rustiec Usergroup Meeting28

Case 3: Locality of mutability



• Borrow checker & ownership model
• à Explicit mutability
• à Hierarchical data structures

• Rust provides wrappers to be more flexible with ownership:
• Rc<T>, Arc<T>, RefCell<T>, Mutex<T>, RwLock<T>
• Also explicit

• Path of least resistance à ownership tree

Rustiec Usergroup Meeting29

Case 3: Locality of mutability



Rustiec Usergroup Meeting30

Case 3: Locality of mutability

cached_infeas

route

schedule



Rustiec Usergroup Meeting31

Case 3: Locality of mutability

cached_infeas

route

schedule



Rustiec Usergroup Meeting32

Case 3: Locality of mutability

• Mutability is explicit & local
à Logic bugs are encapsulated 
à Resolving bugs is way more 
efficient



Thanks for your attention!

Rustiec Usergroup Meeting33


