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Combinatorial Optimization



• Combinatorial explosion
• Algorithms to search good solutions

• Lots of moving parts, complex 
datastructures

• High-level, high-performance 
programming
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Combinatorial Optimization

https://en.wikipedia.org/wiki/combinatorial_explosion



Rust for algorithmic
programming
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• Correctness/robustness à ⇧ confidence & ⇧ productivity
• Speed & memory safety are just the 🍒 on top

• Prime choice for writing complex algorithms, even if:
• GC had no overhead
• C/C++ did not suffer from memory safety issues
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Rust for high-level programming
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Vehicle Routing Problem
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Vehicle Routing Problem
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Case 1: The compiler is your friend



• Move potential errors as much as possible to compile time:
• Make invalid states unrepresentable
• Sum types (enums)
• Pattern matching (exhaustive)
• Destructuring
• Rust has no null and no exceptions (Option<T> & Result<T>)
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Case 1: The compiler is your friend
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Case 2: Functional programming
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Case 2: Functional programming

.iter() .iter() .iter()
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Case 2: Functional programming
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Case 2: Functional programming
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Case 2: Functional programming

(from, to)

.tuple_windows()
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Case 2: Functional programming



• Functional programming for many cases is:
• More expressive
• Documents itself
• Easier to write without bugs

• No worries about performance
• Zero cost abstractions
• Lazy evaluation
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Case 2: Functional programming
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Case 3: Locality of mutability



• Borrow checker & ownership model
• à Explicit mutability
• à Hierarchical data structures

• Rust provides wrappers to be more flexible with ownership:
• Rc<T>, Arc<T>, RefCell<T>, Mutex<T>, RwLock<T>
• Also explicit

• Path of least resistance à ownership tree
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Case 3: Locality of mutability
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Case 3: Locality of mutability

cached_infeas

route

schedule
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Case 3: Locality of mutability

• Mutability is explicit & local
à Logic bugs are encapsulated 
à Resolving bugs is way more 
efficient



Thanks for your attention!
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