
1

RustIEC - Vulnerabilities in Rust programs

RustIEC team
December 12, 2023

2

CONTEXT

Whisperfish:
▶ Client for Signal
▶ Written in Rust

▶ Requires phonenumber parsing
▶ Requires blurhash parsing

2

CONTEXT

Whisperfish:
▶ Client for Signal
▶ Written in Rust
▶ Requires phonenumber parsing
▶ Requires blurhash parsing

3

SOME CRATES
PHONENUMBER-RUST

▶ Parse phonenumbers from different
formats

▶ Format phonenumbers in different
formats

The Whisperfish team took over maintenance in 2023.

3

SOME CRATES
PHONENUMBER-RUST

▶ Parse phonenumbers from different
formats

▶ Format phonenumbers in different
formats

The Whisperfish team took over maintenance in 2023.

4

SOME CRATES
BLURHASH-RS

4

SOME CRATES
BLURHASH-RS

▶ Parse blurhash strings
▶ Generate blurhash strings

The Whisperfish team took over maintenance in 2023.

4

SOME CRATES
BLURHASH-RS

▶ Parse blurhash strings
▶ Generate blurhash strings

The Whisperfish team took over maintenance in 2023.

5

A TROUBLING EMAIL
SEPTEMBER 14 2023

6

A TROUBLING EMAIL (CONT.)
SEPTEMBER 14 2023

1 #[test]
2 fn vuln0() {
3 // Just make sure these don't panic.
4 let _ = rfc3966::phone_number(".;phone-context=");
5 let _ = crate::parse(None, ".;phone-context=");
6 }

This code panics...

and since rust-phonenumber is meant for untrusted input,

this is a vulnerability.

6

A TROUBLING EMAIL (CONT.)
SEPTEMBER 14 2023

1 #[test]
2 fn vuln0() {
3 // Just make sure these don't panic.
4 let _ = rfc3966::phone_number(".;phone-context=");
5 let _ = crate::parse(None, ".;phone-context=");
6 }

This code panics... and since rust-phonenumber is meant for untrusted input,

this is a vulnerability.

7

A PARSING VULNERABILITY

Parsing RFC3966-style phone number URI’s like

tel:863-1234;phone-context=+1-914-555

1 params
2 .as_ref()
3 .and_then(|m| m.get("phone-context"))
4 .map(|&s| if s.as_bytes()[0] == b'+' { &s[1..] } else { s })

What happens with this?

tel:863-1234;phone-context=

8

FIXING THE VULNERABILITY

Old:
1 params
2 .as_ref()
3 .and_then(|m| m.get("phone-context"))
4 .map(|&s| if s.as_bytes()[0] == b'+' { &s[1..] } else { s })

8

FIXING THE VULNERABILITY

Old:
1 params
2 .as_ref()
3 .and_then(|m| m.get("phone-context"))
4 .map(|&s| if s.as_bytes()[0] == b'+' { &s[1..] } else { s })

New:
1 params
2 .as_ref()
3 .and_then(|m| m.get("phone-context"))
4 .map(|&s|
5 if s.as_bytes().get(0) == Some(&b'+') { &s[1..] } else { s })

8

FIXING THE VULNERABILITY

Old:
1 params
2 .as_ref()
3 .and_then(|m| m.get("phone-context"))
4 .map(|&s| if s.as_bytes()[0] == b'+' { &s[1..] } else { s })

Newer:
1 params
2 .as_ref()
3 .and_then(|m| m.get("phone-context"))
4 .map(|&s| s.strip_prefix('+').unwrap_or(s))
5

9

LET’S DO SOMETHING FUN
LET’S PARSE IT IN C

param_t *params = ...;

param_t phone_context;
res = find_param(params, &phone_context, "phone-context");
const char *phone_context_stripped;
if (res) {

if (*phone_context.s == '+') {
phone_context_stripped = phone_context.s + 1;

} else {
phone_context_stripped = phone_context.s;

}
}

What could possibly go wrong?!

9

LET’S DO SOMETHING FUN
LET’S PARSE IT IN C

param_t *params = ...;
param_t phone_context;
res = find_param(params, &phone_context, "phone-context");

const char *phone_context_stripped;
if (res) {

if (*phone_context.s == '+') {
phone_context_stripped = phone_context.s + 1;

} else {
phone_context_stripped = phone_context.s;

}
}

What could possibly go wrong?!

9

LET’S DO SOMETHING FUN
LET’S PARSE IT IN C

param_t *params = ...;
param_t phone_context;
res = find_param(params, &phone_context, "phone-context");
const char *phone_context_stripped;
if (res) {

if (*phone_context.s == '+') {
phone_context_stripped = phone_context.s + 1;

} else {
phone_context_stripped = phone_context.s;

}
}

What could possibly go wrong?!

10

VULNERABILITY IMPACT

Rust version
▶ Trusted input?

No vulnerability.
▶ Untrusted input?

Panic, (probably)
crash.

C version
▶ Trusted input?

No vulnerability.
▶ Untrusted input?

best case SIGSEG (segmentation fault, core
dumped)

worse case Unexploitable read-out-of-bounds,
program corruption, late crash, . . .

worst case Exploitable read-out-of-bounds

10

VULNERABILITY IMPACT

Rust version
▶ Trusted input?

No vulnerability.
▶ Untrusted input?

Panic, (probably)
crash.

C version
▶ Trusted input?

No vulnerability.
▶ Untrusted input?

best case SIGSEG (segmentation fault, core
dumped)

worse case Unexploitable read-out-of-bounds,
program corruption, late crash, . . .

worst case Exploitable read-out-of-bounds

11

REST OF THE TIMELINE

September 14 Carter Snook reports the vulnerability with suggested fix
September 15 Whisperfish team initiates the security advisory on Github1 and

prepares the patches
September 15 Whisperfish team requests a CVE through Github
September 18 Github assigns CVE-2023-42444
September 19 Whisperfish team publishes the advisory and patches
September 19 Whisperfish files in Rust’s advisory db2

1https:
//github.com/whisperfish/rust-phonenumber/security/advisories/GHSA-whhr-7f2w-qqj2

2https://github.com/rustsec/advisory-db/pull/1785, still unmerged!

https://github.com/whisperfish/rust-phonenumber/security/advisories/GHSA-whhr-7f2w-qqj2
https://github.com/whisperfish/rust-phonenumber/security/advisories/GHSA-whhr-7f2w-qqj2
https://github.com/rustsec/advisory-db/pull/1785

12

CARGO DENY & ADVISORY DB

Check your dependencies:
▶ License compliance
▶ Known vulnerabilities (advisory-db)
▶ Disallow/whitelist e.g. git-dependencies

Run it in CI!

13

HOW DID CARTER SNOOK FIND IT?

Fuzzing!

14

FUZZING BLURHASH-RS

. . . so what about blurhash-rs?

Fuzzing Rust code3 is very easy:
1 fuzz_target!(|data: &str| {
2 blurhash::decode(data, 50, 50, 1.0);
3 });

... and sure enough, after some seconds ...
Output of `std::fmt::Debug`:

"1RXRRL\nJ"

3With cargo-fuzz

14

FUZZING BLURHASH-RS

. . . so what about blurhash-rs?

Fuzzing Rust code3 is very easy:
1 fuzz_target!(|data: &str| {
2 blurhash::decode(data, 50, 50, 1.0);
3 });

... and sure enough, after some seconds ...
Output of `std::fmt::Debug`:

"1RXRRL\nJ"

3With cargo-fuzz

14

FUZZING BLURHASH-RS

. . . so what about blurhash-rs?

Fuzzing Rust code3 is very easy:
1 fuzz_target!(|data: &str| {
2 blurhash::decode(data, 50, 50, 1.0);
3 });

... and sure enough, after some seconds ...
Output of `std::fmt::Debug`:

"1RXRRL\nJ"

3With cargo-fuzz

15

FILING CVE’S FOR BLURHASH-RS

. . . here we go again!

September 16 Ruben finds vulnerabilities in blurhash-rs
September 16 Whisperfish team initiates the security advisory on Github4 and

prepares the patches
September 16 Whisperfish team requests a CVE through Github
September 18 Github assigns CVE-2023-42447
September 19 Whisperfish team publishes the advisory and patches
September 19 Whisperfish files in Rust’s advisory db5

4https:
//github.com/whisperfish/blurhash-rs/security/advisories/GHSA-cxvp-82cq-57h2

5https://github.com/rustsec/advisory-db/pull/1786, still unmerged!

https://github.com/whisperfish/blurhash-rs/security/advisories/GHSA-cxvp-82cq-57h2
https://github.com/whisperfish/blurhash-rs/security/advisories/GHSA-cxvp-82cq-57h2
https://github.com/rustsec/advisory-db/pull/1786

15

FILING CVE’S FOR BLURHASH-RS

. . . here we go again!
September 16 Ruben finds vulnerabilities in blurhash-rs
September 16 Whisperfish team initiates the security advisory on Github4 and

prepares the patches
September 16 Whisperfish team requests a CVE through Github
September 18 Github assigns CVE-2023-42447
September 19 Whisperfish team publishes the advisory and patches
September 19 Whisperfish files in Rust’s advisory db5

4https:
//github.com/whisperfish/blurhash-rs/security/advisories/GHSA-cxvp-82cq-57h2

5https://github.com/rustsec/advisory-db/pull/1786, still unmerged!

https://github.com/whisperfish/blurhash-rs/security/advisories/GHSA-cxvp-82cq-57h2
https://github.com/whisperfish/blurhash-rs/security/advisories/GHSA-cxvp-82cq-57h2
https://github.com/rustsec/advisory-db/pull/1786

16

CONCLUSIONS

▶ Advisories and CVEs in free software are very easy (on Github)
▶ Rust prevented out-of-bounds read
▶ Fuzz your code
▶ Use cargo deny in your CI!

Questions are welcome on rubedesm@vub.be!

mailto:rubedesm@vub.be

16

CONCLUSIONS

▶ Advisories and CVEs in free software are very easy (on Github)
▶ Rust prevented out-of-bounds read
▶ Fuzz your code
▶ Use cargo deny in your CI!

Questions are welcome on rubedesm@vub.be!

mailto:rubedesm@vub.be

